Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Multicentre hydrogen bonds in a 2:1 arylsulfonylimidazolone hydrochloride salt ${ }^{1}$

Kyung-Lae Park, ${ }^{\text {a* }}$ Byoung-Gi Moon, ${ }^{\text {a }}$ Sang-Hun Jung, ${ }^{\text {a }}$ Jin-Gyu Kim ${ }^{\text {b }}$ and II-Hwan Suh ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Pharmacy, Chungnam National University, Taejeon 305-764, Korea, and ${ }^{\mathbf{b}}$ Department of Physics, Chungnam National University, Taejeon 305-764, Korea Correspondence e-mail: parki@cnu.ac.kr

Received 17 May 2000
Accepted 3 July 2000

The title compound, (S)-(+)-4-[5-(2-oxo-4,5-dihydroimidazol-1-ylsulfonyl)indolin-1-ylcarbonyl]anilinium chloride $(S)-(+)$ -1-[1-(4-aminobenzoyl)indoline-5-sulfonyl]-4-phenyl-4,5-di-hydroimidazol-2-one, $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$, crystallizes in space group $C 2$ from a $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. In the crystal structure, there are two different conformers with

[^0]their terminal C_{6} aromatic rings mutually oriented at angles of $67.69(14)$ and $61.16(15)^{\circ}$. The distances of the terminal N atoms (of the two conformers) from the chloride ion are 3.110 (4) and 3.502 (4) A. There are eight distinct hydrogen bonds, i.e. four $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$, three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$, with one $\mathrm{N}-\mathrm{H}$ group involved in a bifurcated hydrogen bond with two acceptors sharing the H atom. C $\mathrm{H} \cdots \mathrm{O}$ contacts assist in the overall hydrogen-bonding process.

Comment

In the search for new anticancer agents, the free amine of the title compound, (I), was synthesized originally as a racemic

mixture (Jung et al., 1998) with only the S enantiomer showing improved antitumour activity (Jung, 1999, unpublished work).

Figure 1
The molecular structure and atomic numbering scheme of (a) molecule A and (b) molecule B. Displacement ellipsoids are drawn at the 30% probability level for all non-H atoms. The interactions of the $\mathrm{Cl} 1^{\mathrm{ii}}$ ion [symmetry code: (ii) $1-x, 1+y,-z$] with $\mathrm{N} 1 A$ and $\mathrm{N} 1 B$ are highlighted with dashed lines.

Figure 2
Illustration of the conformational differences of the two conformers, with molecule A (thick lines) overlayed on molecule B (thin lines).

Treatment of the free amine with anhydrous $\mathrm{HCl} / \mathrm{CH}_{3} \mathrm{OH}$ solvent and recrystallization from a $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution unexpectedly produced single crystals of the $2: 1$ hydrochloride salt. A 1:1 salt, however, could also be formed, but only as an amorphous powder. Attempts to obtain a stoichiometric single crystal of the $1: 1$ salt from various solvents have thus far failed. The present X-ray crystallographic study was undertaken in order to elucidate the structural characteristics of the $2: 1$ hydrochloride salt.

In the crystal structure, there exist two conformationally different molecules (A and B; see Fig. 1). The $\mathrm{Cl} 1 \cdots \mathrm{~N} 1 A / B$ distances are 3.110 (4) and 3.502 (4) \AA in A and B, respectively. In addition, the bond lengths of the terminal amine $\mathrm{N} 1 A / B$ atom to the aromatic ring differ $[\mathrm{N} 1 A-\mathrm{C} 11 A$ 1.475 (4) \AA and $\mathrm{N} 1 B-\mathrm{C} 11 B 1.388(5) \AA]$, indicating that molecule A is protonated as NH_{3}^{+}and molecule B exists in the free NH_{2} amine form. In the solid-state IR spectrum, both NH_{3}^{+}and NH_{2} stretching vibrations were identified; difference Fourier synthesis also verified the existence of three and two H atoms at $\mathrm{N} 1 A$ and $\mathrm{N} 1 B$, respectively. The torsion angles between the three aromatic rings differ in molecules A and B, as depicted in Fig. 2. The major differences are observed in the orientation of the terminal aniline group in comparison with the rest of the molecule. The angles of the N -substituted C_{6} ring to the terminal phenyl-ring plane are $67.69(14)^{\circ}$ in A and $61.16(15)^{\circ}$ in B, while the indoline groups are oriented at angles of 68.22 (13) and $60.38(14)^{\circ}$ to the former plane in A and B, respectively. In the indoline group, both conformers differ (torsion angles in Table 1), with the $\mathrm{C} 18 B$ atom lying closer to the indoline ring plane in $B[\mathrm{C} 18 A-\mathrm{C} 19 A-\mathrm{C} 20 A-$ $\mathrm{C} 25 A-161.6(4)^{\circ}$ and $\mathrm{C} 18 B-\mathrm{C} 19 B-\mathrm{C} 20 B-\mathrm{C} 25 B$ $\left.-173.7(4)^{\circ}\right]$.

The carbonyl plane is twisted from the phenyl plane in both conformations $\left[\mathrm{C} 13 A-\mathrm{C} 14 A-\mathrm{C} 17 A-\mathrm{O} 8 A-31.4(5)^{\circ}\right.$ and $\left.\mathrm{C} 13 B-\mathrm{C} 14 B-\mathrm{C} 17 B-\mathrm{O} 8 B-30.0(6)^{\circ}\right]$. The longer $\mathrm{Csp}^{2}-$ Csp^{2} bond lengths [$\mathrm{C} 14 A-\mathrm{C} 17 A 1.503$ (5) \AA and $\mathrm{C} 14 B-$ C17B 1.485 (5) \AA] arise from the deviation from coplanarity of the amide carbonyl and phenyl-ring systems. The two amide groups of each molecule show a characteristic feature in both conformations. The former $\mathrm{C}-\mathrm{N}$ bonds are shorter than the normal amide $\mathrm{C}-\mathrm{N}$ bonds [$\mathrm{N} 2 A-\mathrm{C} 17 A 1.368$ (5) \AA and $\mathrm{N} 2 B-\mathrm{C} 17 B 1.382(5) \AA$ A $]$ attached to the indoline ring. The lengths of the two amide $\mathrm{C}-\mathrm{N}$ bonds of the imidazolone ring differ, with the short $\mathrm{N} 3 A-\mathrm{C} 26 A[1.314(5) \AA]$ and $\mathrm{N} 3 B-$ C26B [1.318 (5) \AA] bonds having double-bond character compared with the longer $\mathrm{N} 4 A-\mathrm{C} 26 A$ [1.402 (4) \AA] and
$\mathrm{N} 4 B-\mathrm{C} 26 B$ [1.402 (4) \AA] bonds on the opposite side of the urea group.

The hydrogen-bonding parameters listed in Table 2 reveal the differences in the intermolecular relationships of the two molecules on packing. The distance of the terminal N atom to the central Cl 1 ion shows remarkable inequality, with $\mathrm{N} 1 A^{\mathrm{ii}} \cdots \mathrm{Cl} 1$ [3.110 (4) A ; symmetry code: (ii) $1-x,-1+y$, $-z$] substantially shorter than $\mathrm{N} 1 B^{\mathrm{ii}} . \ldots \mathrm{Cl} 1$ [3.502 (4) \AA]. The former constitutes a hydrogen bond, whereas the latter resides at the edge of conventional hydrogen bonds. All imidazolone NH groups in A and B act as donors to the Cl 1 ion, forming hydrogen bonds of similar strength and geometry [N3 $A^{\mathrm{i}} \ldots \mathrm{Cl} 1$ 3.106 (3) \AA and $\mathrm{N} 3 B \cdots \mathrm{Cl} 13.103$ (3) \AA; symmetry code: (i) x, $y, 1+z]$. Thus, the Cl ion is a fourfold acceptor, accepting two from the $\mathrm{N} 1 A^{i \mathrm{ii}}$ and $\mathrm{N} 1 B^{\text {ii }}$ terminal amines and two from the $\mathrm{N} 3 A^{\mathrm{i}}$ and $\mathrm{N} 3 B$ atoms of the imidazolone groups of molecules A and B. The $\mathrm{N} 1 A^{\mathrm{ii}}, \mathrm{N} 3 A^{\mathrm{i}}$ and $\mathrm{N} 3 B$ atoms and the Cl 1 ion are almost coplanar and perpendicular to the c axis, resulting in a 'hydrogen-bonding channel' parallel to the c axis. The increased anisotropy of the $\mathrm{N} 3 A$ and $\mathrm{N} 3 B$ atoms may be due to the inherent loose packing through this channel with the Cl ion as an acceptor of hydrogen in the centre showing a synchronous positional disorder and atomic mobility in this direction.

Figure 3
A view of the intermolecular hydrogen bonds around the Cl ion. Displacement ellipsoids are drawn at the 30% probability and the interactions are indicated with dashed lines connecting H and acceptor atoms [symmetry codes: (i) $x, y, 1+z$; (ii) $1-x,-1+y,-z$].

Figure 4
Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl} / \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions between the conformers are depicted with displacement ellipsoids drawn at the 30% probability level [symmetry codes: (ii) $1-x,-1+y,-z$; (iii) $1-x, y,-z$].

As well as the four hydrogen bonds to the Cl 1 ion, four more hydrogen bonds involving the $\mathrm{N}-\mathrm{H}$ groups and O atoms of the imidazolone contribute to crystalline cohesion. $\mathrm{N} 1 A^{\mathrm{iii}}$ donates its $\mathrm{H} 1 A^{\mathrm{iii}}$ and $\mathrm{H} 1 C^{\mathrm{iii}}$ atoms to the carbonyl $\mathrm{O} 7 A^{\mathrm{i}}$ and the $\mathrm{O} 7 B$ atom of the imidazolone, and $\mathrm{N} 1 B^{\text {iii }}$ interacts with the neighbouring $\mathrm{N} 1 A^{\mathrm{iii}}$ and $\mathrm{O} 7 B$ atoms [symmetry code: (iii) $1-x, y,-z$]. The $\mathrm{O} 7 B$ and $\mathrm{N} 1 B^{\text {iii }}$ acceptors share $\mathrm{H} 1 C^{\mathrm{iii}}$ from $\mathrm{N} 1 A^{\mathrm{iii}}$, thus building a threecentre hydrogen bond, and O7B is an acceptor of two H atoms from $\mathrm{N} 1 A^{\mathrm{iii}}$ and $\mathrm{N} 1 B^{\mathrm{iiii}}$. In Fig. 3, all the hydrogen bonds around the Cl ion are shown explicitly. Furthermore, additional multi-centre interactions involving aliphatic $\mathrm{C}-\mathrm{H}$ groups of A and B are present. These are depicted in Fig. 4 and listed in Table 2.

Experimental

The free amine of the title compound was synthesized and purified as reported previously (Jung et al., 1998) from (S)-phenylglycinol (converted into its hydrochloride in $\mathrm{CH}_{3} \mathrm{OH}$ saturated with HCl gas). After treatment of this $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{HCl}$ solution with ethyl acetate, an amorphous powder of the hydrochloride salt was obtained. The elemental analysis and IR spectrum showed that all terminal amine groups are protonated in the 1:1 hydrochloride salt. [Elemental analysis, calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-}: \mathrm{C} 57.77, \mathrm{H} 4.65, \mathrm{~N} 11.23 \%$; found: C 57.0 (5), H 4.4 (3), N 10.86 (8) \%. IR spectrum ($\nu_{\text {max }}, \mathrm{KBr}$, cm^{-1}): 3200, 2800.] The amorphous salt was then treated in $\mathrm{CH}_{3} \mathrm{OH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7:1) co-solvent and slow evaporation produced single crystals of (I) suitable for X-ray measurements. The elemental analysis and IR spectrum revealed (I) to have $\mathrm{NH}_{2}, \mathrm{NH}$ and NH_{3}^{+}groups. [Elemental analysis, calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$: C 59.96, H 4.72, N 11.65; found: C 59.87 (5), H 4.45 (11), N $11.46(13) \%$. IR spectrum ($v_{\max }, \mathrm{KBr}, \mathrm{cm}^{-1}$): 3330, 3200, 2800.]

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	$D_{x}=1.382 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=961.49$	Mo $K \alpha$ radiation

$M_{r}=961.49$
Monoclinic, C2
Mo $K \alpha$ radiation
$a=28.945$ (3) A
Cell parameters from 25
$b=6.5473$ (9) \AA
ections
$c=27.526$ (2) \AA
$\theta=11.42-14.21^{\circ}$
$\beta=117.622(7)^{\circ}$
$\mu=0.237 \mathrm{~mm}^{-1}$
$V=4621.9(9) \AA^{3}$
$T=294$ (2) K
$Z=4$
Prism, pale brown
$0.43 \times 0.40 \times 0.33 \mathrm{~mm}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

	Molecule A	Molecule B
S1-N4	$1.660(3)$	$1.670(3)$
S1-C24	$1.763(3)$	$1.748(3)$
N1-C11	$1.475(4)$	$1.388(5)$
N2-C17	$1.368(5)$	$1.382(5)$
N3-C26	$1.314(5)$	$1.318(5)$
N3-C28	$1.452(5)$	$1.452(4)$
N4-C26	$1.402(4)$	$1.454(4)$
N4-C27	$1.457(4)$	$1.229(4)$
O7-C26	$1.230(4)$	$1.222(4)$
O8-C17	$1.221(4)$	$1.485(5)$
C14-C17	$1.503(5)$	
N2-C18-C19	$103.4(3)$	$105.3(3)$
C21-N2-C17-O8	$-7.0(6)$	$-4.1(6)$
C18-N2-C17-C14	$-26.8(5)$	$-22.9(6)$
C21-N2-C17-C14	$169.7(3)$	$176.1(3)$
C13-C14-C17-O8	$-31.4(5)$	$-30.0(6)$
C17-N2-C18-C19	$-141.4(4)$	$-153.4(3)$
C21-N2-C18-C19	$24.3(4)$	$9.8(4)$
N2-C18-C19-C20	$-24.8(4)$	$-9.3(4)$
C18-C19-C20-C21	$18.2(4)$	$5.9(4)$
C18-C19-C20-C25	$-161.6(4)$	$-173.7(4)$
C18-N2-C21-C20	$-13.5(4)$	$-6.4(4)$
C18-N2-C21-C22	$162.7(4)$	$170.9(4)$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.905, T_{\text {max }}=0.926$
8420 measured reflections
4537 independent reflections (plus
3715 Friedel-related reflections)

$$
\begin{aligned}
& 5916 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.030 \\
& \theta_{\max }=25.17^{\circ} \\
& h=0 \rightarrow 34 \\
& k=-7 \rightarrow 7 \\
& l=-32 \rightarrow 29 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 300 \mathrm{~min} \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

$R(F)=0.048$
$w R\left(F^{2}\right)=0.116$
$S=1.018$
8252 reflections
605 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0486 P)^{2}\right. \\
& \quad+1.0617 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: }(\text { Flack, } 1983) \\
& \text { Flack parameter }=-0.07(7)
\end{aligned}
$$

The H atoms were treated using a riding model $(\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.86-0.89 \AA$). The absolute structure was inferred not only from the absolute configuration of (S)-phenylglycinol used as starting material in the synthesis, but also determined by refining an enantiomorph-sensitive parameter to -0.07 (7) (Flack, 1983) using all 3715 Friedel pairs.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: WinGX (Farrugia, 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Johnson et al., 1998); software used to prepare material for publication: WinGX.

KP, BM and SJ acknowledge a grant (HMP-98-DA-7-0015) from the Good Health R \& D Project, Ministry of Health \& Welfare, Korea.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1010). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1998). WinGX. Version 1.61 for Windows. University of Glasgow, Scotland.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Johnson, C. K., Burnett, M. N. \& Farrugia, L. J. (1998). ORTEP-3 for Windows. University of Glasgow, Scotland.
Jung, S.-H. (1999). Unpublished work.
Jung, S.-H., Lee, H.-S., Song, J.-S., Kim, H.-M., Han, S.-B., Lee, C.-W., Lee, M.-S., Choi, D.-R., Lee, J.-A., Chung, Y.-H., Yoon, S.-J., Moon, E.-Y., Hwang, H.-S., Seong, S.-K. \& Lee, D.-K. (1998). Bioorg. Med. Chem. Lett. 8, 1547-1550.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: ${ }^{1}$ Internal code of the Dong-Wha Pharmaceutical Industries Co. Ltd, Korea: DW2282.

